The Leontief Input-Output Model - Summary

The setup

- n industries: industry i produces product i
- $x_{i}=$ output of industry i, in dollars
- $d_{i}=$ consumer demand for product i, in dollars (final demand)
- $a_{i j}=$ dollars of product i required to produce one dollar of product j (input demand)
- Put another way: $a_{i j}=$ amount that industry j pays to industry i for each dollar of product j produced
- Question: How much should each industry produce in order to meet both the final and input demands?

The model

- Let's focus on the case when $n=3$
- Let A be the matrix of input demands, let D be the vector of final demands, let X be the vector of outputs:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad D=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

- The outputs X must satisfy the following system of linear equations:

$$
(I-A) X=D \quad \Leftrightarrow \quad\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

- $(I-A)$ is called the Leontief matrix

Solving the model

- If $(I-A)$ is invertible, then the output vector X is:

$$
X=(I-A)^{-1} D
$$

- Labor (primary inputs)
- $a_{0 j}=$ Primary inputs for product j
$=$ How much industry j spends on labor for each dollar of product j produced
$=1-\left(a_{1 j}+a_{2 j}+a_{3 j}\right)$
\Rightarrow Amount that industry j spends on labor $=a_{0 j} x_{j}$
\Rightarrow Total labor cost for all industries
$=$ Total required amount of primary inputs

$$
=a_{01} x_{1}+a_{02} x_{2}+a_{03} x_{3}
$$

- Total amount that industry j pays industry $i=a_{i j} x_{j}$

